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Abstract

Island-like oxidation of a solid surface is studied. Such a process occurs for example at the beginning of the second

stage of the oxidation of UO2 to U3O8, and its study is thus important for handling of used nuclear fuel in intermediate

dry air storage. Mathematical formulation of the problem is presented, approximate analytical formulas are derived

and discussed for the isothermal case, and the non-isothermal case is studied numerically. It is shown that for the

accurate prediction of the UO2 surface oxidation, it is important to know separately the rates of island nucleation and

of island-radius growth. Only a certain product of these two rates can be obtained from isothermal experiments. Here

we show how one can determine directly the values of the activation energies of both these rates from a series of suitably

designed accelerated non-isothermal experiments. � 2002 Elsevier Science B.V. All rights reserved.

PACS: 28.41.Kw; 82.65.�i; 28.41.Te; 28.41.Bm

1. Introduction

For spent nuclear fuel placed in intermediate dry air

storage, it is very important to know with high accuracy

the rates associated with the second stage of the UO2

oxidation. This stage is characterized by the creation of

U3O8, which is accompanied by a considerable increase

of the specific volume of the oxide. This volume increase

can cause the splitting of the sheath of a spent nuclear

fuel element with a tiny defect enabling ingress of oxy-

gen and thus oxidation, which could result in the release

of active U3O8 powder into the storage container. This

would complicate considerably the subsequent handling

and permanent disposal of the fuel.

The oxidation of a UO2 surface is generally a two

stage process [1]. In the first stage the surface is covered

at low temperatures by a continuous layer oxidized to

about U3O7 (unirradiated UO2) or to U4O9þx (e.g.,

LWR spent fuel). The second stage (which may proceed

at different speeds in unirradiated UO2 and in various

spent fuels) consists of nucleation and subsequent

growth of U3O8 islands. This paper deals with the sec-

ond stage only, namely with the initial phase of the

second stage characterized by less than 50% of the total

surface covered with U3O8. The reader is referred to a

previous paper [1] on the island-like oxidation, and to

the references cited therein, for a detailed discussion of

the underlying chemical processes and the justification

of the model used. Here the emphasis is on the mathe-

matical aspects of the model.

The previous paper [1] dealt in a considerable detail

with the isothermal case, in particular with the deter-

mination of an activation energy for the formation of

U3O8 on the surface of UO2. This activation energy is

a combination of the activation energies of the two

subprocesses, which cannot be separated in an isother-

mal experiment. However, the knowledge of the indi-

vidual values of these two partial activation energies

is necessary e.g. for the accurate prediction of the used

fuel behavior in a dry air storage. The present paper
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therefore goes beyond the isothermal case, and shows

how the values of the two partial activation energies can

be obtained from non-isothermal experiments.

In Section 2, kinetic equations (a set of three simple

first-order ordinary differential equations) describing the

nucleation and growth of the circular oxidation islands

for general (temperature and therefore time dependent)

rates of island nucleation and growth are derived. Then,

in Section 3, the previous discussion [1] of the isothermal

case is completed by adding a few more details on the

accuracy of the truncated Taylor-series approximations.

From a series of isothermal experiments one can only

determine a convoluted ‘lumped’ rate constant and its

activation energy (of the U3O8 formation mentioned

above). This lumped rate is a certain product of the two

individual rates of island nucleation and growth.

Finally, in Section 4, numerical solutions of the general

kinetic equations are obtained for different temperature

scenarios using different decomposition of the lumped

activation energy into the two partial ones. The sensi-

tivity of the degree of surface oxidation to the variation

of the values of these two activation energies is found to

be significant. It is thus desirable to determine the values

of both activation energies separately. The last part of

Section 4 shows how a series of suitably designed non-

isothermal experiments may achieve this. Section 5 then

summarizes the new results and draws conclusions for

possible experimental work.

2. Formulation of the problem

In the previous paper [1], detailed derivation of the

kinetic equation governing the time dependence of the

fraction of the surface covered by the oxidation islands

can be found for the case of constant rates of nucleation

and of island growth. Following the same line of rea-

soning, here we derive a more general expression. The

two-dimensional model used in this approach is deemed

appropriate because comparison is made with X-ray

diffraction data with a sampling depth of less than 1 lm.

Let us assume that we have a flat surface of area F

that is subjected to the island type of oxidation. The rate

at which the microscopic nuclei of new islands per unit

area of the free (still uncovered) surface are formed at

time t is KnðtÞ. The dependence of KnðtÞ on time t is

implicit: Kn is a function of the surface temperature, and

the surface temperature can vary with time in an arbi-

trary way.

Assuming that the growth of each island is isotropic,

we can introduce a single linear rate of growth, KgðtÞ, of
the radii of all islands at time t. Kg again depends im-

plicitly on time through possible temperature variation

with time.

Both rates are assumed to have the Arrhenius de-

pendence on temperature,

KnðT Þ ¼ cn e�En=RT ; ð1Þ

and

KgðT Þ ¼ cg e�Eg=RT ; ð2Þ

where T is the absolute temperature (which can be an

arbitrary function of time), R is the gas constant, En and

Eg are the respective activation energies, and cn and cg
are suitable constants.

At time t the radius of an island originated at a

previous time �tt, is

rðt;�ttÞ ¼
Z t

�tt
Kgðt0Þdt0: ð3Þ

and the growth rate of its area (A ¼ pr2) is

dAðt;�ttÞ
dt

¼ 2prðt;�ttÞKgðtÞ: ð4Þ

Let us denote by aðtÞ the fraction of the surface F

covered by the oxidation islands at time t; aðtÞ6 1. At

time �tt, the total uncovered area of the surface on which

new islands can nucleate is thus equal to ½1� að�ttÞ�F , and
the total number of new islands that come into being

during an infinitesimal time interval d�tt is 1

dnð�ttÞ ¼ ½1� að�ttÞ�FKnð�ttÞd�tt: ð5Þ

As the islands grow, they come into mutual contact

and slowly merge into a stochastic interconnected net-

work of oxidized areas of complicated geometrical

structure, the area of which is difficult to calculate. What

can be calculated rather easily instead, is an auxiliary

quantity equal to the sum AT of the areas of all circular

islands, assuming that they preserve their circular form

indefinitely, as if they grew over each other, covering the

whole surface many times over in due time. AT has no

physical meaning, it is introduced solely to simplify

mathematical manipulations. It is obtained by multi-

plying the area of a single island of Eq. (4) by the

number of island of the same size as given by Eq. (5),

and integrating from the start of the nucleation (oxida-

tion) process, which we put at t ¼ 0, i.e.,

AT ðtÞ ¼
Z t

0

Aðt;�ttÞdnð�ttÞ: ð6Þ

1 Unlike in some other processes involving nucleation and

growth in which further nucleation is inhibited after an initial

distribution of some small entities (nuclei) is established, there is

no such inhibition in the surface oxidation studied here. The

access to oxygen is the same for all possible nucleation sites on a

planar solid surface. As long as a site remains on the uncovered

fraction of the surface, the probability that it becomes a new

nucleus (i.e., the rate of nucleation) is not influenced but the

presence of older nuclei/islands in other parts of the surface.

Therefore, nucleation continues as long as a < 1.
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We can introduce a dimensionless ‘surface fraction’,

a0ðtÞ ¼ AT ðtÞ=F , also for this auxiliary quantity. Eqs. (6)

and (5) then give

a0ðtÞ ¼
Z t

0

Aðt;�ttÞ½1� að�ttÞ�Knð�ttÞd�tt: ð7Þ

For most cases involving high enough temperatures

one gets

lim
t!1

a0ðtÞ ¼ 1: ð8aÞ

This is true for example for all isothermal cases, because

KgðtÞ depends on time only through the time dependence

of temperature. Only if temperature decreases so fast

that KgðtÞ goes to zero at least exponentially for large

times, can one get a finite value of a0ð1Þ. On the other

hand, the actual fractional surface coverage aðtÞ can

never exceed 1, and in the cases of constant non-zero Kg

one has

lim
t!1

aðtÞ ¼ 1: ð8bÞ

Only for small times, before the first two islands do

join, do we have a0ðtÞ ¼ aðtÞ. This implies, that, in the

least, the following two relations must be satisfied when

a ¼ 0, i.e., at t ¼ 0:

a0ð0Þ ¼ að0Þ ¼ 0; ð9aÞ

and

da0ð0Þ
dt

¼ dað0Þ
dt

: ð9bÞ

The simplest relation between aðtÞ and a0ðtÞ satisfying

conditions (8a)–(9b) is

a ¼ 1� e�a0 : ð10Þ

According to Ref. [2], this seems to be a generally

accepted approximation for the description of the sto-

chastic process of the island merging. Although this

approximation seems to be of a somewhat arbitrary

nature, it is actually quite reasonable. In Ref. [1] it was

found in agreement with a finite element simulation of

the process of island oxidation of UO2. One has to bear

in mind that we are only interested in situations with

a6 0:5. Namely, for higher values of the surface cover-

age one cannot obtain useful experimental data to

compare this theory with, because a ¼ 0:5 roughly cor-

responds to the onset of spallation. And for a < 0:5
there is hardly any approximation involved because in

this range a0 does not differ much from a. For a ¼ 0:5,
Eq. (10) still gives for a0 only the value of 0.693. Even for

nearly fully covered surface, a0 goes to infinity rather

slowly. Thus for a ¼ 0:9 one has a0 ¼ 2:3, and a ¼ 0:99
corresponds to a0 ¼ 4:6. Eq. (10) simply represents an

elegant smoothing of the random network of merging

islands for high and experimentally uninteresting values

of a, which makes it possible to perform in what follows

most of the analysis analytically, while introducing only

negligible error for smaller values of a that are of interest

here. Nucleation always correctly takes place on and

only on that fraction of the surface that is actually

uncovered, see Eq. (5).

From Eq. (10) we have

da
dt

¼ ½1� a� da0

dt
; ð11Þ

and from Eq. (7)

da0ðtÞ
dt

¼
Z t

0

dAðt;�ttÞ
dt

½1� að�ttÞ�Knð�ttÞd�tt; ð12Þ

where we have used the obvious fact that Aðt; tÞ ¼ 0.

Substituting this into Eq. (11), and using Eq. (4) gives

daðtÞ
dt

¼ 2pKgðtÞ ½1� aðtÞ�
Z t

0

rðt;�ttÞ ½1� að�ttÞ�Knð�ttÞd�tt;

ð13Þ

which is the sought kinetic equation describing the

evolution of the surface coverage for the arbitrary nu-

cleation and growth rates, under the approximation of

Eq. (10).

Let us introduce the following two auxiliary func-

tions:

f ðtÞ ¼
Z t

0

rðt;�ttÞKnð�ttÞ ½1� að�ttÞ�d�tt ð14aÞ

and

gðtÞ ¼
Z t

0

Knð�ttÞ ½1� að�ttÞ�d�tt: ð14bÞ

Then it is easy to verify, that the integro-differential

equation (13) is equivalent to the following system of

ordinary differential equations of the first order:

daðtÞ
dt

¼ 2pKgðtÞ ½1� aðtÞ�f ðtÞ; ð15aÞ

df ðtÞ
dt

¼ KgðtÞgðtÞ; ð15bÞ

dgðtÞ
dt

¼ KnðtÞ ½1� aðtÞ�; ð15cÞ

and

að0Þ ¼ f ð0Þ ¼ gð0Þ ¼ 0: ð15dÞ

This system can be easily solved numerically using

standard methods such as that of Runge–Kutta or the

numerical integration capabilities of the recent computer

algebra systems (here we used Maple V [3]).
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3. Isothermal case

When the temperature is constant in time, both Kg

and Kn are also constant in time, and

rðt;�ttÞ ¼ Kgðt ��ttÞ:

Eq. (13) then becomes

daðtÞ
dt

¼ 2pj ½1� aðtÞ�
Z t

0

ðt ��ttÞ ½1� að�ttÞ�d�tt; ð16Þ

where

j ¼ K2
gKn

is a ‘lumped’ rate constant. From Eqs. (1) and (2) one

has

jðT Þ ¼ cje
�Ej=RT ; ð17aÞ

where

cj ¼ cnc2g; ð17bÞ

and

Ej ¼ En þ 2Eg: ð17cÞ

One can introduce dimensionless time,

s ¼ t
ffiffiffiffiffiffi
pj3

p
; ð18Þ

and go back to a0 in Eq. (16) to obtain

da0ðsÞ
ds

¼ 2

Z s

0

ðs � �ssÞe�a0ð�ssÞ d�ss:

Differentiating now this equation twice with respect to s,
one gets

d3a0ðsÞ
ds3

¼ 2e�a0ðsÞ: ð19Þ

Note that in the isothermal case, transformation (18)

produces a parameter-less kinetic equation. It suffices to

solve it once for ever, and then simply scale the time

according to Eq. (18) to obtain solutions for different

values of j.
Introducing auxiliary functions /ðsÞ and cðsÞ, one

can convert Eq. (19) into a system of ordinary differ-

ential equations:

da0ðsÞ
ds

¼ 2/ðsÞ; d/ðsÞ
ds

¼ cðsÞ; and
dcðsÞ
ds

¼ e�a0ðsÞ:

Returning to a with the help of Eqs. (10) and (11)

finally gives

daðsÞ
ds

¼ 2 ½1� aðsÞ�/ðsÞ; ð20aÞ

d/ðsÞ
ds

¼ cðsÞ; ð20bÞ

dcðsÞ
ds

¼ 1� aðsÞ; ð20cÞ

and

að0Þ ¼ /ð0Þ ¼ cð0Þ ¼ 0: ð20dÞ

This is a variation of the system (15a)–(15d) and it could

be obtained directly from it using transformation (18),

and the following definitions:

/ðsÞ ¼ pKgffiffiffiffiffiffi
pj3

p f ðtÞ and cðsÞ ¼ p
Kgffiffiffiffiffiffi
pj3

p
� �2

gðtÞ:

The reason why we went via Eq. (19) is that it can be

used as the easiest starting point to derive a power-series

solution for the isothermal case. Because of the initial

conditions (20d), which are equivalent to

a0ð0Þ ¼ da0ð0Þ
ds

¼ d2a0ð0Þ
ds2

¼ 0;

and the form of Eq. (19), the Taylor series for a0ðsÞ has
only terms with powers that are multiples of three:

a0ðsÞ ¼
X1
j¼1

ajs3j: ð21Þ

Substituting this expansion into Eq. (19) gives for the

first few coefficients aj the following values:

a1 ¼
1

3
; a2 ¼ � 1

180
; a3 ¼

11

45360
;

a4 ¼ � 5

399168
and a5 ¼

9299

13621608000
:

Apparently, the absolute value of aj goes to zero very

fast as j increases and so truncating Taylor series (21)

after just a few terms can be expected to give a very good

approximation for a large range of s values. Substituting
Taylor series (21) truncated after k terms into Eq. (10)

gives the following approximation for aðsÞ:

aðsÞ ¼ 1� exp

"
�
Xk

j¼1

ajs3j
#
: ð22Þ

As for any truncated Taylor series, increasing the

number of terms, k, increases the range of small positive

s values over which the truncated series is practically

identical with the exact solution obtained by solving

numerically Eqs. (20a)–(20d). In addition to that, in this

particular case all even terms a2i are negative, and thus

truncated series (22) obviously diverges to the unphysi-

cal value of �1 as s ! 1 for all even k, whereas it goes

to the correct limit of 1 for all odd k. Therefore, one

should use only the odd-term terminated truncations as
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they give a good approximation of aðsÞ for all values of
s. Such approximations differ from the exact solution

only in a range of medium values of s. This range will

become narrower as the (odd) number of terms, k, is

increased. Fig. 1 compares the exact solution (solid line)

with the approximate solution for several values of k. It

indicates that the difference between the exact and ap-

proximate solutions is rather small even for k ¼ 1 when

it is significant only for s 2 ð1; 3Þ and never larger than

about 0.021. And k ¼ 3 already gives an approximate

solution that is almost identical with the exact one for all

practical purposes––it differs noticeably from the exact

solution only for s 2 ð1:8; 2:7Þ with the maximum dif-

ference being about 0.0047. Note that all the approxi-

mate solutions for odd k seem to be larger than the exact

one, whereas those for the even k are less than the exact

one (cf. Fig. 1(b)). And the solution for k ¼ 4 starts to

diverge to �1 sooner than that for k ¼ 2.

Comparing this theoretical solution of Eq. (16) (or

(19)) with the evolution of the surface coverage observed

in a series of isothermal experiments, it is possible to

determine the temperature dependence of the lumped

rate constant j of Eqs. (17a)–(17c). Specifically, for the

formation of U3O8 on the surface of unirradiated UO2,

Fig. 1. Comparison of the exact solution (solid line) of the isothermal Eqs. (20a)–(20d) with the truncated power-series approximation

for several values of k (as indicated). (a) Full range of a. (b) The large-a portion of (a) magnified.

214 M. Kol�aa�rr / Journal of Nuclear Materials 301 (2002) 210–219



comparing the experimental results with the k ¼ 1 ap-

proximation,

aðtÞ ¼ 1� e�pjt3=3 ð23Þ

(cf. Eqs. (18) and (22)), it was determined in Ref. [1] that

cj ¼ e86:165 h�3 ¼ e113:401 a�3 and

Ej ¼ 52808:0R: ð24Þ

These are the values that will be used in all numerical

examples (and in all figures) in what follows. They

represent the maximum that can be determined from

isothermal experiments only. To determine the two

constituent components of j, one has to design suitable

non-isothermal experiments, as will be discussed in the

next section. For various spent fuels the value of Ej may

be different from that of Eq. (24). Then the whole

analysis of the next section has to be repeated with the

correct data for a given sample.

4. Non-isothermal case – suggestions for experimental

studies

First note that Eq. (13) is invariant to simultaneously

replacing cn by cnC2 and cg by cg=C, where C is an ar-

bitrary constant. Therefore, the value of fraction cov-

ered (oxidized), aðtÞ, remains unchanged if constants cn
and cg of Eqs. (1) and (2) are varied such that the

product cnc2g (cj of Eq. (17b)) remains constant. In other

words, a C2-fold increase in the nucleation rate can be

compensated by a simultaneous C-fold decrease in the

growth rate without any effect on the time dependence of

the surface coverage a. Measuring only the surface

coverage, whatever the time dependence of the temper-

ature, one cannot determine the individual values of two

constant cn and cg, only their product cj.

What always varies with cn and cg is the size and

number of individual oxidation islands. Therefore, to

determine directly the values of cn and cg, one would

have to measure for example the growth rate of the di-

ameters of a set of well defined islands. It would suffice

to do that at a single value of constant temperature, so

as to determine the absolute value of Kg at that tem-

perature. Using then the isothermal results such as those

of Eq. (24), and the individual values of the activation

energies Eg and En determined from non-isothermal ex-

periments such as the ones suggested in what follows,

one would be able to determine also the values of cn
and cg.

It is impossible to find even an approximate analyt-

ical solution (such as a truncated power-series expan-

sion) of Eq. (13) or of the equivalent system (15a)–(15d)

for the general case of arbitrary time dependence of the

temperature. This could be done only if temperature is

an analytical function of time, and even then it might be

feasible only in some special cases, such as when the

inverse temperature is a linear function of time.

For the purpose of determining the values of Eg and

En by comparing experimental data to theoretical re-

sults, one has to solve the system of Eqs. (15a)–(15d)

numerically for a whole series of values of Eg and En

satisfying constraint (17c) with Ej given by Eq. (24), and

using the same time dependence of temperature as in the

experiments. Then those values of Eg and En that give

the best agreement with the experiments are the result of

our measurement.

4.1. Long-term hypothetical temperature variation

At first, let us illustrate how big the effect of variation

of (uncertainty in) the activation energies of Kn and Kg

may be in a ‘real-life’ situation. Let us determine the

time dependence of the oxidized fraction a of U3O8 on

the surface of unirradiated UO2 for the temperature

profile of Fig. 2 which represents a plausible scenario

that may be encountered by used fuel in a dry air storage

facility [4].

Three special cases of possible temperature depen-

dence of Kn and Kg within the constraints set by Eqs.

(17c) and (24) are discussed first:

(1) Eg ¼ En ¼ Ej=3.

(2) Eg ¼ 0, En ¼ Ej.

(3) En ¼ 0, Eg ¼ Ej=2.

Case (1) is a ‘median’ case in the sense that the activation

energies of both rate constants are the same, whereas the

other two cases represent the extreme cases when one of

the two rate constants does not depend on temperature

Fig. 2. An expected variation of the surface temperature of the

used nuclear fuel emplaced for 20 years in a dry-air-storage

facility.
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(and thus on time) at all. The time dependence of a
corresponding to these three cases is presented in Fig. 3.

One can see that the time dependence of a differs sig-

nificantly for these three cases. In case (2), the surface is

covered completely in about 7 years, whereas in the

other two cases the growth of a slows down almost to a

halt: at 20 a, a increases at a rate of mere 0.002 a�1 and

0.0003 a�1 for cases (1) and (3), respectively.

Results of these calculations for other intermediate

values of Eg and En are presented in Fig. 4, which shows

the surface coverage after 1.5, 2.5, 10 and 20 years from

the start of the oxidation process as a function of the

nucleation rate activation energy expressed as a fraction

of the lumped activation energy Ej (and the growth rate

activation energy is then given by Eq. (17c)). It was

verified that the integration procedure (using 15 digit

precision) was very stable and the results were inde-

pendent of the choice of cn and cg (bound by the con-

straint (17b)).

One can see that the actual values of En and Eg have

significant effect on the relative rate of the surface cov-

erage in different time intervals. For small En (and thus

large Eg) a increases very rapidly initially but its increase

is slowed down at larger times. For large En the opposite

is true.

In the next subsection it will be shown how carefully

designed accelerated experiments at higher temperatures

could be used to determine the values of En and Eg

needed for the exact prediction of the long-term be-

havior of various oxidizing UO2 surfaces (such as those

of used fuel placed in dry air storage facilities).

4.2. Short-term experiments with linear variation of

temperature

To achieve the total coverage of the surface within a

month from the beginning of the experiment, one has to

increase the maximum temperature to somewhere be-

tween 250 and 300 �C. Examples of the time dependence

of the surface coverage a obtained at such elevated

temperatures for linear (increasing or decreasing, or first

increasing and then decreasing) temperature variation

over a 30 days period are presented in Figs. 5–8. Again,

the lumped rate values of Eq. (24) were used.

We first simulated a rather slow monotonic increase

of temperature from 100 to 300 �C in 30 days. The ox-

idation started to speed up rapidly only when the tem-

perature of 250 �C, achieved after 20 days, was being

approached. All the curves for different En (Eg) values

were rather close together. Nevertheless, if such an ex-

periment could be stopped after 21 days (samples had to

be cooled down instantaneously to stop further oxida-

tion), it would give the largest resolution, of all the

temperature scenarios discussed here, in the range

0 < En=Ej K 0:9: the spread of the a values in this range

is almost 0.8. However, there is practically no resolution

when En approaches Ej (Eg goes to 0). If instant cooling

is impossible, simulations for modified temperature

profiles including gradual cooling (for example a linear

decrease of temperature after 21 or 22 days to 100 �C
over a period of one day) show that the resolution would

decrease everywhere.

It thus seems that there is no point in increasing the

temperature above about 260 �C. Fig. 5 shows what

happens if temperature is slowly monotonically in-

creased only in the range of onset of fast oxidation,

between 200 and 260 �C in 30 days. One can see that the

spread of the curves for different En values is increased

Fig. 3. Time dependence of the surface coverage a for tem-

perature profile of Fig. 2 for three different possible decompo-

sitions of Ej: (1) Eg ¼ En ¼ Ej=3 (solid line); (2) Eg ¼ 0 and

En ¼ Ej (dashed line); and (3) Eg ¼ Ej=2 and En ¼ 0 (dotted

line).

Fig. 4. The surface coverage a for temperature profile of Fig. 2

after 1.5, 2.5, 10 and 20 years (as indicated) shown as a function

of the nucleation rate activation energy (expressed as a fraction

of the lumped rate activation energy Ej of Eq. (24)).
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but the results are otherwise not significantly different

from those for the 100–300 �C temperature ramp. Fig. 6

then shows the results for a monotonic linear decrease of

temperature from 260 to 140 �C (assuming instanta-

neous heating to 260 �C at the beginning of the experi-

ment). Note that the order of curves is reversed with the

reversal of the temperature variation: When the tem-

perature is increasing, the fastest covering of the surface

occurs when En ¼ 0 (no dependence of the nucleation

rate on temperature and the strongest dependence of the

growth rate on temperature), whereas when the tem-

perature is decreasing, the fastest covering occurs for

En ¼ Ej (no dependence of the growth rate on temper-

ature and the strongest dependence of the nucleation

rate). In both cases, the resolution for En ! Ej remains

poor.

Finally Figs. 7 and 8 represent more realistic exper-

imental scenarios – they consider both the heating of the

sample followed by gradual cooling. When the heating

phase is much shorter than the cooling phase (as in the

scenarios chosen here), the curves for different En are still

Fig. 5. Time dependence of the surface coverage a for linear

temperature increase from 200 to 260 �C over 30 days (see the

inset). Different curves correspond to different values of En=Ej

as indicated.

Fig. 6. Time dependence of the surface coverage a for linear

temperature decrease from 260 to 140 �C over 30 days (see the

inset). Different curves correspond to different values of En=Ej

as indicated.

Fig. 7. Time dependence of the surface coverage a for piecewise

linear temperature variation starting with a fast linear increase

from 20 to 240 �C in 2 h followed by a slow linear decrease to

100 �C in 718 h (total duration is again 30 days; see the inset).

Different curves correspond to different values of En=Ej as in-

dicated. The five lowest curves correspond to En=Ej ¼ 0:2, 0.3,

0.4, 0.5 and 0.6.

Fig. 8. Time dependence of the surface coverage a for piecewise

linear temperature variation starting with a fast linear increase

from 20 to 260 �C in 2 h followed by a slow linear decrease to

100 �C in 718 h (total duration is again 30 days; see the inset).

Different curves correspond to different values of En=Ej as

indicated.
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ordered monotonically with increasing En as for the in-

stantaneous heating of Fig. 6. When the duration of

both phases is comparable, the monotonic ordering of

the curves is lost as in Fig. 3.

One can see that the a curves are quite sensitive to

relatively small changes in the temperature scenarios. By

slightly changing the peak temperature, one canmove the

highest resolution ‘window’ (the region of the En=Ej ratio

where the separation of the curves is the largest). It would

probably be necessary to perform several simultaneous

experiments on identical samples to cover the whole

range of possible En=Ej ratios. One limitation that has to

be taken into account is that the temperature scenarios

must be chosen so that the surface coverage a does not

exceed the value of about 0.5. This corresponds to the

onset of spallation, above which the oxidation is not

limited to a smooth surface any more. The scenarios of

Figs. 7 and 8 and two additional intermediate scenarios

occurring in Fig. 9 were designed with this fact in mind.

Fig. 9 indicates how the results of four simultaneous

experiments on identical samples using different tem-

perature scenarios could be used to determine experi-

mentally the ratio En=Ej. If one marks on each curve the

point corresponding to the final value of a observed in

the respective experiments, all four points should lie on a

single horizontal line, the intersection of which with the

vertical axis determines the value of En=Ej for the

samples used. How well are the four points aligned

horizontally is the measure of the experimental accu-

racy.

The examples discussed here hopefully illustrate well

enough that adjusting suitably the maximum tempera-

ture and the duration of the heating and the cooling

phases can increase the resolution in a particular range

of the En values. It is relatively easy to solve numerically

the system of Eqs. (15a)–(15d) for any temperature

scenario. Therefore, any number of simulations of this

type can be carried out in conjunction with an actual

experiment, for the actual temperature variation used in

the experiment, which can be an arbitrary function of

time. The value of En=Ej can be progressively refined by

designing optimized temperature scenarios with the

highest resolution window in that region of En=Ej values

in which En=Ej was found in the previous lower-accu-

racy experiments.

5. Summary and conclusions

The theory of the surface coverage in the island-like

oxidation of certain solid surfaces was presented, and

applied to the case of unirradiated UO2. Exactly the

same procedure could be used for used fuel surface. The

previous paper [1] on the isothermal case was comple-

mented by the observation that only the odd-term-

terminated truncated Taylor-series approximations for

the isothermal time dependence of the surface coverage

should be used.

However, the main new contribution of this paper

is numerical exploration of various non-isothermal sce-

narios––a plausible long-term real-life nuclear-used-fuel

dry-air-storage scenario, and various accelerated linear

experimental scenarios at elevated temperatures. Sug-

gestions were presented on how to determine separately

the activation energies of the nucleation rate and the

growth rate constants using a series of experiments on

identical samples with slightly different temperature

scenarios. Any such experimental studies should be ac-

companied by numerical simulations of the type pre-

sented in Section 4.2 for exactly the same temperature

scenarios as the ones used in the experiments. By fine

tunning the temperature scenarios, one can increase the

resolution of different ranges of the values of the acti-

vation energies. In this way, one could successively in-

crease the accuracy of measurements by moving the

center of the high-resolution window to the previous

estimate of the activation energy (of nucleation).

Note added in proof

In the case of U3O8, the circular islands may be

just a conceptual model that is useful in interpreting

Fig. 9. Comparison of the final surface coverage a for the 30-

day temperature scenarios of Figs. 7 and 8 and two interme-

diate scenarios i1 and i2, as a function of the ratio En=Ej. The

intermediate scenarios are: i1 – a fast linear increase from 20 to

250 �C in 2 h followed by a slow linear decrease to 100 �C in 718

h; i2 – fast linear increase from 20 to 255 �C in 1 h followed by a

slow linear decrease to 100 �C in 719 h. The final values of a
obtained in four simultaneous experiments on identical samples

subjected to these temperature scenarios must lie on a hori-

zontal line the position of which gives the value of En=Ej for the

given samples.
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experimental data in a standardized, quantitative way.

Experimental recommendations of this paper may be

useful for further verification of this model.
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